BAMAD GALICIA

Inicio » Noticias Bamad » Transcripción automática del Archivo de Indias

Transcripción automática del Archivo de Indias


Fuente: Faro de Vigo

“Estamos lejísimos de ordenadores con las prestaciones del cerebro de un mosquito”
Una sociedad basada en robots inteligentes es una idea de muy futuro, algo que no nos gusta

Enrique Vidal es catedrático del Departamento de Sistemas Informáticos y Computación de la Universidad Politécnica de Valencia (UPV) y acaba de lograr el Premio Nacional de Informática Aritmel 2011 que concede la Sociedad Científica e Informática de España. Vidal lidera un proyecto nacional en reconocimiento de formas y aprendizaje computacional, dos áreas clave en inteligencia artificial.
Este doctor en Ciencias Físicas lleva más de 20 años trabajando en Reconocimiento de Formas, Visión por Computador y Aprendizaje Computacional. Ahora coordina a más de 100 investigadores doctores de toda España en un amplio proyecto de investigación nacional del programa Consolider-Ingenio 2010 que aborda un nuevo enfoque de estas áreas de la Inteligencia Artificial.

–Trabaja en “Machine Learning”, el aprendizaje de las máquinas. Suena a ciencia ficción…

–El Reconocimiento de Formas, o el “Machine Learning”, que es un término quizás más moderno para más o menos los mismos conceptos, es ya un campo de investigación tradicional, en el que se está trabajando desde hace más de 50 años. Hoy en día lo vemos en aplicaciones como el reconocimiento del habla para reserva de trenes, vuelos y hoteles por teléfono o la traducción automática. También están muy consolidados los identificadores de placas de matrícula de los coches que ya vemos en casi todos los garajes o los sistemas de identificación biométrica de personas.

–¿Y de cara al futuro? ¿Cuáles son los retos en este campo?

–Esto sigue. Estamos lejísimos de alcanzar las prestaciones de un cerebro humano o ni siquiera de un cerebro animal de bajas prestaciones, como pudiera ser el de un mosquito.

–¿Las máquinas podrán suplantar a un ser inteligente?

–Uno de los cambios de orientación en el proyecto Consolider que coordino, ha sido el reenfoque de “Machine Learning” para plantear los problemas, no desde un punto de vista de automatización total, de suplantar a un ser inteligente por una máquina, sino de cooperación con el humano. Es decir, como una asistencia. Hay muchas aplicaciones en las que la total automatización no es conveniente, como por ejemplo en la medicina. Nunca habrá un diagnóstico de una máquina que no esté firmado por un médico. Nosotros no los veremos, seguro. Tampoco en la conducción de vehículos. Ya existen prototipos totalmente automatizados, pero no es pensable que alguien quiera comprar un coche robotizado por completo, entre otras cosas porque nos gusta conducir.

–¿Por qué se renuncia a crear máquinas que nos sustituyan?

–Porque tardaremos décadas sino siglos en saber hacerlo. Por otro lado, en muchos casos eso no sería realista ni conveniente, como por ejemplo en la conducción. Tal vez técnicamente se puedan llegar a tener coches con piloto automático fiable, pero frecuentemente se recibirá alguna señal que nos hará retomar el control porque habrá que tomar decisiones basadas no ya en percepción puramente, sino incluso en emociones.

–¿Se imagina una sociedad del futuro basada en robots inteligentes a lo “Blade Runner”?

–Va a ser difícil que se pueda automatizar todo en el futuro. Una sociedad basada en robots inteligentes, no sólo es algo de muy, muy de futuro, sino que es algo que no nos gusta. Además, a mucha gente le da miedo. No es ya que de miedo, es que sería una cosa «fea». Los humanos queremos tener el control de todo, lógicamente. Pensamos que hay que aspirar a hacer las cosas lo más automáticas que se pueda, pero en el fondo el objetivo no es suplantar la inteligencia sino asistirla. Es decir, que gracias a estos sistemas el ser humano sea “más inteligente”. Por ejemplo, un escritor podrá escribir libros más bonitos y más rápidamente, lo mismo para un artista gráfico. Pero al final, será la personalidad del creador la que guie al sistema, que tiene que ser un asistente, un amplificador de la creatividad humana.

–¿En qué está volcando ahora?

–En la transcripción asistida de manuscritos antiguos. En este campo, la transcripción es muy difícil y generalmente la hacen paleógrafos especializados en la época del libro en cuestión, por lo que no es pensable sustituir a estos profesionales. Podemos hacer transcripciones totalmente automáticas, pero tendrán muchos errores que habrá que corregir. Tantos fallos que al final los especialistas no quieren ni oir hablar de la total automatización y prefieren hacerlo ellos a mano.

–¿Cómo se reducirán esos fallos?

–Utilizando herramientas matemáticas y metodologías en Reconocimiento de Formas y “Machine Learning” podemos, en vez de minimizar la tasa de error, que ha sido el objetivo tradicional, tratar de maximizar la experiencia de colaboración con el humano. Es decir, minimizar el esfuerzo de interacción entre la persona y la máquina.

–¿Cómo puede aprender una máquina a transcribir mejor un manuscrito antiguo?

–La idea es que el sistema propone, por ejemplo, la transcripción de una línea de texto y si el operador detecta una palabra que no le gusta, lo indica, o la cambia. Esto es percibido por el sistema como una retroalimentación útil para corregir otros errores relacionados de la misma línea. Además, el sistema puede ir aprendiendo de sus errores y evitar repetirlos en el resto las siguientes páginas a transcribir. Este es el tipo de sinergia persona-maquina que estamos tratando de mejorar.

–¿Esa colaboración hombre-máquina hará que la transcripción sea cada vez más perfecta?

–Sí. El ejemplo típico de una aplicación sería transcribir una colección de libros, digamos entre 10.000 y 100.000 páginas. El proyecto puede empezar con un trabajo humano bastante intensivo pero, conforme va progresando, cada vez los humanos trabajan menos y al cabo de algún tiempo prácticamente lo hace todo el sistema. Esto nos gustaría que fuera extrapolable a proyectos como la transcripción del Catastro del Marqués de la Ensenada del siglo XVIII, que es un trabajo pendiente en España, o a la transcripción del Archivo de Indias, que es un enorme repositorio de texto manuscrito, que de hecho su volumen se mide en kilómetros de estanterías, de documentos puestos uno al lado del otro. El 99,9 % del Archivo de Indias está por transcribir.

–¿La transcripción automática del Archivo de Indias es factible?

–Hoy en día ya se puede transcribir, pero el resultado tiene tantos errores que no es muy útil. Por ello hace falta la intervención humana. Si la persona tiene que intervenir, lo importante es no ya conseguir el mínimo error, sino de lograr que el humano trabaje lo menos posible; y no hablamos ya de trabajo físico, sino de trabajo más bien cognitivo.

Advertisements

Deixar unha resposta

introduce os teu datos ou preme nunha das iconas:

Logotipo de WordPress.com

Estás a comentar desde a túa conta de WordPress.com. Sair / Cambiar )

Twitter picture

Estás a comentar desde a túa conta de Twitter. Sair / Cambiar )

Facebook photo

Estás a comentar desde a túa conta de Facebook. Sair / Cambiar )

Google+ photo

Estás a comentar desde a túa conta de Google+. Sair / Cambiar )

Conectando a %s

%d bloggers like this: